Chapter 23 -- Inferences About Means

Student's t-model

- Fatter tails, with degrees of freedom
- As degrees of freedom(n-1) increases, the
t-models look more normal
- Unimodal, symmetric, and bell shaped

Assumptions and Conditions for t-models:

1) Independence Assumption

- Randomization Condition: randomly sampled data are ideal.
- 10% condition: the sample is no more than 10% of the population.

2) Normal Population Assumption

- Nearly Normal Condition: the data come from a distribution that is unimodal and symmetric. (check this by making a histogram or Normal Probability plot)

Sample Size:

- Small samples ($\mathrm{n}<15$ or so), the data follow a Normal model pretty closely. If there is skewness, or there are outliers, don't use t-models.
- Moderate samples (n between 15 and 40 or so), t-models will work well as long as the data is unimodal and reasonably symmetric. Make a histogram.
- $\mathrm{N}>40$ or 50 , it is safe to use the t -models even if the data are skewed or have outliers, but be sure also to report skewness and outliers in conclusion.

One-sample t-interval

When the conditions are met, we can find the confidence interval for the proportion mean, μ. The confidence interval is:

$$
\bar{y} \pm t_{n-1}^{*} \times S E(\bar{y})
$$

Where the standard error of the mean, $S E(\bar{y})=\frac{s}{\sqrt{n}}$
The critical value t_{n-1}^{} depends on the particular confidence level, C, that you specify and on the number of degrees of freedom, $n-1$, which we get from the sample size.

One-sample t-test for the mean

The conditions for the one-sample t-test for the mean are the same as for the one-sample t -interval. We test the hypothesis $\mathrm{H}_{0}: \mu=\mu_{0}$ using the statistic

$$
t_{n-1}=\frac{\overline{\mathrm{y}}-\mu_{0}}{\operatorname{SE}(\overline{\mathrm{y}})}
$$

The standard error of $\overline{\mathrm{y}}$ is $\operatorname{SE}(\overline{\mathrm{y}})=\frac{\mathrm{s}}{\sqrt{\mathrm{n}}}$. Where the conditions are met and the null hypothesis is true, this statistic follows a Student's t-model with n -1 degrees of freedom. We use that model to obtain a P-value. With that P -value, we either fail to reject or reject H_{0}.

